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Haoyu Zhen 1 FOUNDATIONS

1 Foundations

1.1 Model evaluation:

Hold-out, cross validation and bootstrap.
For cross validation, we often let the numbers of the folds be 10. And in bootstrap, the equation
limn→∞(1− 1/m )m = 1/e is used to analyse the probality.

1.2 Performance

Definition 1.1 (Sensitivity and FPR). Now we consider that

prediction+ prediction-
Actual 1 0

1 TP FP
0 FN TN

TPR =
TP

TP + FN
, FPR =

FP

TN+ FP
.

Remark 1.1. ROC space and AUC are also useful to select models.

Definition 1.2 (Precision and recall).

precision =
TP

TP + FP
, recall =

TP

TP + FN
.

Fβ =
(1 + β2)× P ×R
β2 × P +R

.

β depends on the preference of Precision and Recll.

1.3 Bias-Variance Decomposition

Theorem 1.1.

E(f ;D) = bias2(x) + var(x) + ε2

= (f̄(x)− y)2 + ED[f(x;D)− f̄(x)] + ED[(yD − y)2]
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2 Regression

2.1 Linear Regression

The hypothesis class of linear regression predictors is simply the set of linear functions,

Hreg =
{
x 7→ 〈w,x〉+ b : w ∈ Rd, b ∈ R

}
.

Intuitively,

LS(h) =
1

m

m∑
i=1

(h(x)− y)2, ∀h ∈ Hreg.

To minimize the loss function, we need to solve Aw = b where A def
====

∑
xix

T
i = XXT and b

def
====∑

yixi = XTy. If A is invertible then the solution is w = A−1b.

Theorem 2.1.
ω = (XTX)−1XTy.

If the training instances do not span the entire space of Rd then A is not invertible.

Theorem 2.2. Using A’s eigenvalue decomposition,we could write A as V D+V T where D is a
diagnonal matrix and V is an orthonormal matrix. Define D+ to be the diagonal matrix such
that D+

i,i = 0 if Di,i = 0 otherwise D+
i,i = 1/Di,i . Then,

Aŵ = b

where ŵ = V D+V T b

Proof.
Aω̂ = AA+b = V DV TV D+V T b = V DD+V T b =

∑
i:Di,i ̸=0

viv
T
i b.

That is, Aω̂ is the projection of b onto the span of those vectors vi for which Di,i 6= 0. Since the
linear span of x1, · · · , xm is the same as the linear span of those vi, and b is in the linear span of
the xi, we obtain that Aŵ = b, which concludes our argument. □

Remark 2.1. Indeed we always use the Gradient Descent method to optimize the loss function.

Linear regression for polynomial regression tasks Hn
poly = {x 7→ p(x)} where ψ(x) = (1, x, x2, · · · , xn)

and p(ψ(x)) = a0 + a1x+ a2x
2 + · · ·+ anx

n.

2.2 Ridge Regression

To ameliorate the effect of the invertible matrix, we could introduce the regularization.
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Definition 2.1 (Ridge Regularized Loss).

R(w) = λ‖w‖2.

Now the loss function reads:

L = LS(w) +R(w) =
1

m

m∑
i=1

(h(x)− y)2 + λ‖w‖2.

Hence, the solution to ridge regression becomes

w = (2λmI +A)−1.

Theorem 2.3 (The stability of regularization). Let D be a distribution over X × [−1 × 1], where
X =

{
x ∈ Rd : ‖x‖ ≤ 1

}
. Let H =

{
w ∈ Rd : ‖w‖ ≤ B

}
. For any ε ∈ (0, 1), let m ≥ 150B2

/
ε2 .

Then applying the ridge regression algorithm with parameter λ = ε
/
3B2 satisfies

ES∼Dm [LD(A(S))] ≤ min
w∈H

L(D) + ε.

2.3 Lasso Regression

Definition 2.2 (Lasso Regularized Loss).

R(w) = λ‖w‖21.

Under some assumptions on the distribution and the regularization parameter λ, the LASSO will find
sparse solutions

2.4 Logistic Regression

The hypothesis class is:
Hsig =

{
x 7→ sigmoid(wx) : w ∈ Rd

}
where sigmoid(s) = 1/[1 + exp(−s)] . The loss function is

L =
1

m

m∑
i=1

log [1 + exp(−yiwxi)].

Remark 2.2. Optimization in logistic regression

• The advantage of the logistic loss function is that it is a convex function with respect to w.

• No close form solution.

• Identical to the problem of finding a Maximum Likelihood Estimator.
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3 Generalized Linear Models

3.1 The Exponential Family

Definition 3.1. We say that a class of distributions is in the exponential family if it can be written
in the form

p(y; η) = b(y) exp
(
ηTT (y)− a(η)

)
.

Here, η is called the natural parameter (also called the canonical parameter) of the distribution;
T (y) is the sufficient statistic (for the distributions we consider, it will often be the case that
T (y) = y); and a(η) is the log partition function. The quantity e−a(η) essentially plays the role of
a normalization constant, that makes sure the distribution p(y; η) sums/integrates over y to 1.

3.2 Constructing GLMs

1. y | x; θ ∼ ExponentialFamily(η). I.e., given x and θ, the distribution of y follows some exponential
family distribution, with parameter η.

2. Given x, our goal is to predict the expected value of T(y) given x. In most of our examples,
we will have T (y) = y, so this means we would like the prediction h(x) output by our learned
hypothesis h to satisfy h(x) = E[y|x]. (Note that this assumption is satisfied in the choices for
hθ(x) for both logistic regression and linear regression. For instance, in logistic regression, we
had hθ(x) = p(y = 1|x; θ) = 0 · p(y = 0|x; θ) + 1 · p(y = 1|x; θ) = E[y|x; θ].)

3. he natural parameter η and the inputs x are related linearly: η = θTx. (Or, if η is vector-valued,
then ηi = θTi x.)

Example 3.1 (Logistic Rrgression). Note that: y|x; θ ∼ Bernoulli(ϕ). Then we have E[y|x; θ] = ϕ.
Thus

hθ(x) = E[y|x; θ] = ϕ =
1

1 + e−η
=

1

1 + e−θT x
.

If we have a training set of n examples{(xi, yi); i = 1, · · · , n} and would like to learn the param-
eters θi of this model, we would begin by writing down the log-likelihood

L(θ) =
n∑

i=1

log p(yi|xi; θ) =
n∑

i=1

log

( 1

1 + e−θT x

)1{yi=1}
(

e−θT x

1 + e−θT x

)1{yi=0}
.
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4 Kernel Method

Now we will introduce a function ϕ(x) : Rd 7→ Rp mapping the attributes to the features.

4.1 LMS with Features

Suppose that θ =
∑n

i=1 βix
i. By updating rules of gradient descent,

θ := θ + α

n∑
i=1

[
yi − θTϕ(xi)

]
ϕ(xi)

=

n∑
i=1

{
βi + α

[
yi − θTϕ(xi)

]}︸ ︷︷ ︸
new β

ϕ(xi)

Then i ∈ {1, · · · , n}:

βi := βi + α

yi − n∑
j=1

βjϕ(x
j)Tϕ(xi)

 = βi + α

yi − n∑
j=1

βjK(ϕ(xj), ϕ(xi))


where

K(x, z) ≜ 〈ϕ(x), ϕ(z)〉.

Remark 4.1. Kernel is a corresponding to the feature map ϕ as a function that maps X×X 7→ R.

4.2 Properties of Kernels

Definition 4.1 (Gaussian kernel).

K(x, z) = exp

(
−‖x− z‖

2

2σ2

)
.

The gaussian kernel is corresponding to an infinite dimensional feature mapping ϕ. Also, ϕ lives
in Hilbert space.

Theorem 4.1. The corresponding kernel matrix K ∈ Rn×n is symmetric positive semidefinite.

Theorem 4.2 (Mercer Theorem). Let K : Rd×Rd 7→ R be given. Then for K ti be a valide Mercer
Kernel, it is necessary and sufficient that for any

{
x1, · · · , xn

}
, (n < ∞), the correspibonding

kernel matrix is symmetic positive semidefinite. Nota Bene: the generalized form involve L2

functions.
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5 Support Vector Machines
SVMs are among the best (and many believe are indeed the best) off-the-shelf supervised learning
algorithms. So, be self-motivated in this section.

5.1 Hard-SVM

Hard-SVM is the learning rule in which we return an ERM hyperplane that separates the training
set with the largest possible margin. The Hard-SVM rule is

argmax
(w,b):∥w∥=1

min
i∈[m]

∣∣wTxi + b
∣∣ s.t. ∀i, yi

(
wTxi + b

)
≥ 1.

Equivalently,
argmax

(w,b):∥w∥=1

min
i∈[m]

yi
(
wTxi + b

)
(5.1)

Next, we give another equivalent formulation of the Hard-SVM rule as a quadratic optimization prob-
lem.1

Input: (x1,1 ), · · · , (xm, ym)

Solve:
(w0, b0) = argmin

(w,b)

1

2
‖w‖2 s.t. ∀i, yi

(
wTxi + b

)
≥ 1. (5.2)

Output: ŵ = w0/‖w0‖ , b̂ = b0/‖w0‖

Lemma 5.1. The output of Hard-SVM is a solution of Equation (5.1).

Proof. Let (w1, b1) be a solution of Equation (5.1) and γ1 = mini∈[m] yi(w
T
1 x

i + b1). Then we
have

yi
(
w1

γ1

T
xi +

b1
γ1

)
≥ 1.

Hence ‖w0‖ ≤ ‖w1/γ1 ‖ = 1/γ∗ . It follows that for all i,

yi(ŵTxi + b̂) ≥ 1

‖w0‖
≥ γ1.

Since ‖ŵ‖ = 1 we obtain that (ŵ, b̂) is an optimal solution of Equation (5.1). □

5.1.1 The Sample Complexity of Hard-SVM*

Definition 5.1 (Separability). Let D be a distribution over Rd×{±1}. We say that D is separable
with a (γ, ρ)-margin if there exists (w∗, b∗) such that ‖w∗‖ = 1 and such that with probability 1
over the choice of (x, y) ∼ D we have that y(w∗Tx+ b∗) ≥ γ and ‖x‖ ≤ ρ.

1A quadratic optimization problem is an optimization problem in which the objective is a convex quadratic function
and the constraints are linear inequalities.
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Theorem 5.1. Let D be a distribution over Rd × {±1} that satisfies the (γ, ρ)-separability with
margin assumption using a homogenous halfspace. Then, with probability of at least 1 − δ over
the choice of a training set of size m, the 0-1 error of the output of Hard-SVM is at most√

4(ρ)/γ2

m
+

√
2 log(2/δ )

m
.

5.2 Soft-SVM and Norm Regularization

Input: (x1,1 ), · · · , (xm, ym)

Parameter: λ > 0

Solve:

min
w,b,ξ

(
λ‖w‖2 + 1

m

m∑
i=1

ξi

)
s.t. ∀i, yi

(
wTxi + b

)
≥ 1− ξi and ξi ≥ 0

.

Output: w, b

Definition 5.2 (hinge loss).

lhinge((w, b), (x, y)) = max
{
0, 1− ywTx+ b

}
.

Now we just need to optimize λ‖w‖2 + Lhinge(w, b).

5.3 Duality

The Lagrangian for EQ.5.2 is:

L(w, b, α) = 1

2
‖w‖2 −

n∑
i=1

αi

[
y(i)
(
wTx(i) + b

)
− 1
]
.

By the fact that ∇L = 0

w =

n∑
i=1

αiy
(i)x(i) and

n∑
i=1

αiy
(i) = 0.

Plug them back we obtain

max
α
L(α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

y(i)y(j)αiαj〈x(i), x(j)〉

s.t. αi ≥ 0
n∑

i=1

αiy
(i) = 0

.

Note that

b = −
maxy(i)=−1 w

Tx(i) +miny(i)=1 w
Tx(i)

2
.
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5.4 SMO

Consider the dual form of Soft-SVM

max
α
L(α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

y(i)y(j)αiαj〈x(i), x(j)〉

s.t. 0 ≤ αi ≤ C
n∑

i=1

αiy
(i) = 0

.

The dual-complementrity conditions are
αi = 0 =⇒ y(i)(wTx(i) + b) ≥ 1

αi = C =⇒ y(i)(wTx(i) + b) ≤ 1

0 < αi < C =⇒ y(i)(wTx(i) + b) = 1

.

Now we introduce SMO (sequential minimal optimization). Repeat till convergence:

1. Select some pair αi and αj to update next (using a heuristic that tries to pick the two that will
allow us to make the biggest progress towards the global maximum).

2. Reoptimize W (α) with respect to i and αj , while holding all the other αk’s (k 6= i, j) fixed.

5.5 Implementing Soft-SVM Using SGD

Algorithm 1 SGD for Solving Soft-SVM
θ = 0
for t = 1, · · · , T do
w(t) = 1/λt × θ
Choose i uniformly at random for [m]
if yiwTxi < 1 then
θ ← θ + yixi

end if
end for
return

∑T
t=1 w

(t)/T

11
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6 Clustering
K-means and GMM algorithms are easy. Here I will not introduce them. These PDFs may be helpful:

• https://cs229.stanford.edu/summer2020/cs229-notes7a.pdf

• https://cs229.stanford.edu/summer2020/cs229-notes7b.pdf
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7 Desicion Tree
A general framework for growing a decision tree is as follows. We start with a tree with a single leaf
(the root) and assign this leaf a label according to a majority vote among all labels over the training
set. We now perform a series of iterations. On each iteration, we examine the effect of splitting a
single leaf. We define some gain measure that quantifies the improvement due to this split. Then,
among all possible splits, we either choose the one that maximizes the gain and perform it, or choose
not to split the leaf at all.

Algorithm 2 Iterative Dichotomizer 3
Input: training set S, feature subset A ⊆ [d]

1: if all examples in S are labeled by 1 then
2: return a leaf 1
3: else if all examples in S are labeled by 0 then
4: return a leaf 0
5: else if A = ∅ then
6: return leaf whose value is the majority labels in S
7: end if
8: j ← argmaxi∈A Gain(S, i)

9: T1 ← ID3
(
{(x, y) ∈ S : xj = 1}, A/{j}

)
10: T2 ← ID3

(
{(x, y) ∈ S : xj = 0}, A/{j}

)
11: return a root r whose left subtree is T1 and the right tree is T2

Definition 7.1 (Entropy). The surprise oof observing a discrete random variable Y takes on value
k is − log(Y = k). Then the entropy of Y is the expected syrprise:

H(Y ) = −
∑
k

Pr(Y = k) log Pr(Y = k).

When we choose a split-feature, we want to reduce entropy in some way. Thus we want to minimize
the conditional entropy H(Y |Xj):

minH(Y |Xj) ≜ Pr(Xj = 1)H(Y |Xj = 1) + Pr(Xj = 0)H(Y |Xj = 0)

which is equivalent to
max I(Xj ;Y ) ≜ H(Y )−H(Y |Xj).

The quantity I(Xj ;Y ) is known as the mutual information between Xj and Y .

Definition 7.2 (Gini impurity/index).

G(Y ) =
∑
k

Pr(Y = k)
∑
j ̸=k

Pr(Y = j) = 1−
∑
k

2

Pr(Y = k).

Similarly, we minimize the quantity G(Y |Xj) ≜ Pr(Xj = 1)G(Y |Xj = 1) + Pr(Xj = 0)G(Y |Xj = 0).

13
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7.1 Random Forest

Random forests are a specific ensemble method where the individual models are decision trees
trained in a randomized way so as to reduce correlation among them. Because the basic decision
tree building algorithm is deterministic, it will produce the same tree every time if we give it the same
dataset and use the same algorithm hyperparameters (stopping conditions, etc.).
Random forests are typically randomized in the following ways:

• Per-classifier bagging (short for bootstrap aggregating): sample some number m ¡ n of
datapoints uniformly with replacement, and use these as the training set.

• Per-split feature randomization: sample some number k < d of features as candidates to be
considered for this split.

14
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8 Dimensionality Reduction
Dimensionality reduction is the process of taking data in a high dimensional space and mapping it into
a new space whose dimensionality is much smaller.

8.1 Principal Component Analysis

In PCA, we have a compressing matrix W ∈ Rn,d and a recovering matrix U ∈ Rd,n.For given data
x1, x2, · · · , xm, we aim at solving the problem:

argmin
W,U

n∑
i=1

‖xi − UWxi‖2 (8.1)

Lemma 8.1. Let (U,W ) be a solution of Equation 8.1. Then UTU = I and W = UT . (The
columns of U are orthonormal.)

Proof. Let R =
{
UWx : x ∈ Rd

}
which is an n dimensional linear subspace of Rd. Let ∈ Rn,d be

a matrix satisfies the range of V is R and V TV = I. Then ‖x− V y‖2 = ‖x‖2 + ‖y‖2 − 2yTV Tx.
Minimizing this w.r.t. y gives that y = V Tx. □

By the fact that ∥∥x− UUTx
∥∥2 = ‖x‖2 − trace(UTxxTU).

We could rewrite Equation 8.1 as follows:

argmax
U∈Rd,n:UTU=I

trace

[
UT

(
m∑
i=1

xix
T
i

)
U

]
.

Theorem 8.1. Let x1, · · · , xm be arbitrary vectors in Rd, let A =
∑m

i=1 xix
T
i , and let u1, · · · , un

be n eigenvectors of the matrix A corresponding to the largest n eigenvalues of A. Then, the
solution to the PCA optimization problem given in Equation 8.1 is to set U to be the matrix
whose columns are u1, · · · , un and to set W = UT .

Proof. Let V DV T be the spectral decomposition of A (suppose that D1,1 ≥ · · · ≥ Dd,d) and let
B = V TU . We have

trace
(
UTAU

)
= trace

(
BTDB

)
=

d∑
j=1

Dj,j

n∑
i=1

B2
j,i ≤ max

β∈[0,1]d:∥β∥≤n

d∑
j=1

Dj,jβj =

n∑
j=1

Dj,j .

Nota Bene: BTB = I which entails
∑d

j=1

∑n
i=1B

2
j,i = n. □

15



Haoyu Zhen 8 DIMENSIONALITY REDUCTION

8.2 Implementation

Algorithm 3 PCA algorithm
Input: A matrix of m examples X ∈ Rm,d and number of components n.

1: if m > d then
2: A = XTX
3: Let u1, · · · , un be the eigenvetors of A with largest eigrnvalues
4: else
5: B = XXT

6: Let v1, · · · , vn be the eigenvetors of B with largest eigrnvalues
7: ∀i, ui = XT vi

/∥∥XT vi
∥∥

8: end if
9: return u1, · · · , un

The algorithm use a more efficient method when d > m. The complexity is O(m2d) under this case.
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