Never compromise. Even in the face of Armageddon.
——《Watchman》(2009)
Note: 本页内容将不断更新。
国外课程作业实现可见我的 Github repository:SLS: Self Learning stack.
国外课程、教材资源
(不难发现,我偏爱 Stanford University 😑)
AI 类课程
CS231n: Deep Learning for Computer Vision, Stanford University
-
这门课程是我「梦开始的地方」
-
Course website: http://cs231n.stanford.edu
CS224n: Natural Language Processing with Deep Learning, Stanford University.
- 与 CS231n 相应,核心主题是 NLP。
- Course website: https://web.stanford.edu/class/cs224n/index.html
CS229: Machine Learning, Stanford University.
-
Lecture Notes 极为丰富,该课程的作业可通过一个 trick 得到:http://cs229.stanford.edu/summer2020/
-
Course website: http://cs229.stanford.edu
CS 189: Introduction to Machine Learning, UC Berkeley
- 这门课的 Lecture Notes 内容亦很丰富,可以与 CS229 相结合食用。
- Course website: https://www.eecs189.org
Understanding Machine Learning, Cambridge University
-
这本书更偏 Learning Theory,是我接触 Machine Learning 的第一本书。
-
https://www.cs.huji.ac.il/w~shais/UnderstandingMachineLearning/
STATS214 / CS229M: Machine Learning Theory, Stanford University
- 机器学习进阶课程,极其硬核,我仅用其作「陶冶情操」。
- Course website: https://web.stanford.edu/class/stats214/
其他计算机类课程
CS142: Web Applications, Stanford University.
- Course website: https://web.stanford.edu/class/cs142/index.html
CS148: Introduction to Computer Graphics and Imaging, Stanford University
- Course website: https://web.stanford.edu/class/cs148/lectures.html
物理数学类课程
Physics342: Quantum Mechanics I, Reed University
- 作为量子力学入门,我建议学习下面这本书
- Material: “Introduction to Quantum Mechanics, 3rd ed.”, Cambridge University Press, 2018.
15-458: Discrete Differential Geometry, Carnegie Mellon University
- 离散微分几何学,可以作为计算机图形学进阶数学知识学习。
- Course website: https://csd.cmu.edu/course-profiles/15-458-Discrete-Differential-Geometry